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ABSTRACT
Camera technology continues to improve year over year with ad-
vancements in both hardware sensor capabilities and computer
vision algorithms. The ever increasing presence of cameras has
opened the door to a new class of attacks: the use of computer vi-
sion techniques to infer non-digital secrets obscured from view. We
prototype one such attack by presenting a systemwhich can recover
handwritten digit sequences from recorded video of penmotion.We
demonstrate how our prototype, which uses off-the-shelf computer
vision algorithms and simple classification strategies, can predict a
set of digits that dramatically outperforms guessing, challenging
the belief that shielding information in analog form is sufficient
to maintain privacy in the presence of camera surveillance. We
conclude that addressing these new threats requires a new method
of thinking that acknowledges vision-based side-channel attacks
against physical, analog mediums.

CCS CONCEPTS
• Security and privacy → Human and societal aspects of se-
curity andprivacy; Security inhardware; •Computingmethod-
ologies → Computer vision.
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1 INTRODUCTION
Cameras are widely understood as capturing a limited 2D projec-
tion of a 3D world. However, improvements in camera hardware
and image processing are enabling cameras to infer aspects of the
surrounding 3D space. Advancements in motion tracking, object
recognition, and scene reconstruction from the Computer Vision
community, combined with higher megapixel counts and video
framerates, are enabling advanced image processing features on
consumer devices such as "Night Sight" (for low light photography)
and "Portrait Mode" (for simulated depth-of-field).
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Figure 1: An example scenario. Even though the writing is
not visible, the pen’s motion can be observed and the writ-
ing reconstructed by a digital camera. Our prototype gener-
alizes this attack to less optimal camera angles, distances,
and image quality.

Meanwhile, analog mediums continue to be trusted platforms
for sensitive information. Writing on paper, physical ID cards, and
face-to-face meetings are considered more trustworthy and less
accessible to foreign adversaries when compared to digital com-
munication. The airgapped nature of analog, “real-life" activities
is assumed to avoid many of the risks stemming from the digital
realm.

Given ongoing trends regarding the proliferation of cameras,
improvements to sensor hardware, and new computer vision tech-
niques, we argue that the safety of analog data - and in particular,
the process of its creation - is overestimated in today’s environment.
The increasing availability and effectiveness of cameras, present
in both pockets and on property, mean that common areas where
physical data is frequently produced cannot be trusted as confi-
dential, and core societal processes dependent on analog platforms
have not yet adapted to the increasing capabilities of cameras.

While cameras add permanency to what can be seen directly
in their field of view, they can also indirectly observe hidden in-
formation in and outside the frame. As a result, the number of
opportunities for computer-vision based side channel attacks is
increasing. Advanced image processing techniques can recover
visual artifacts from what was previously thought as noise [17].
Even in designated secure environments, such as a bank vault or
government embassy, remote recording devices intended for main-
taining surveillance and security can be used to breach the analog
sphere. As an example, we believe the following attacks will become
feasible within the coming years:

• An attacker with access to a surveillance camera observes
the hand and pen motion of someone writing on a paper
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form at a bank, inferring what was written without a direct
view of the paper. In this paper, we prototype a working
version of this attack.

• The camera present in an airplane infotainment tablet ob-
serves the laptop vibrations and arm motions of a passen-
ger, inferring what he or she is typing. Attacks making use
of hardware vibrations from user input have already been
demonstrated, inferring keypresses from the vibration of a
laptop [16] and touchscreen input from the vibrations of a
tablet [38].

• An overhead camera records a customer using an ATM and
uses the victim’s muscle movements to decipher their PIN,
even if they have shielded the keypad with their hand. Prior
work has already shown that hand motions can be used to
infer a user’s smartphone PIN upon entry [36].

We explore the first attack in depth: recovering handwritten
text through distant observation of pen motion alone. Such an
attack would be effective even if the victim deliberately attempts
to obscure their writing from view by covering the tip of their pen
or the writing itself. To test the attack, we prototype a system that
demonstrates promising accuracy, while only making use of a single
fixed camera, off-the-shelf 2D motion tracking, and a relatively
simple classification strategy.

In summary, the contributions of this paper are:
• We outline a new class of attacks that allow digital cameras
to steal information through indirect observation of analog
input devices and storage mediums.

• We demonstrate a prototype of an example attack that allows
an attacker to steal hidden written text from camera footage
of pen motion alone.

• We discuss ongoing social trends as well as hardware and
software capabilities that will make this new class of attacks
a serious concern in the future.

2 BACKGROUND
Side channel attacks leveraging mobile sensors have grown in pop-
ularity over recent years. Attacks using microphones to infer key-
board input [2] and accelerometers to infer smartphone input [3]
have been demonstrated to be effective. However, the progress of
these attacks has been slowed due to diminishing returns in hard-
ware development and sensor fidelity - in part because of a lack of
consumer interest (microphone quality is not usually a distinguish-
ing hardware feature) and physical constraints (such as the inverse
square law).

On the other hand, camera technology continues to improve
year-over-year. Image and video quality improvements open the
door to new vision based side channels that may have previously
been considered infeasible. In this section, we identify hardware,
software, and societal factors responsible for these changes.

2.1 Improvements in Hardware
Spurred by consumer interest, improvements in high-precision
massmanufacturing have resulted in smartphone cameramegapixel
counts improving year-over-year [33] [13]. These improvements
have been accompanied by increases in video capture framerates
up to 240 fps, enabling slow-motion video recording previously

only available in specialized high speed cameras [18]. Minute visual
details useful for side-channel attacks - like the vibrations of a bag
of chips caused by noise [11] - will begin to become more easily
captured by general purpose consumer-grade camera hardware.

Furthermore, manufacturers are beginning to exceed single-
camera configurations in favor of housing multiple cameras in
their devices for the capture of "3D pictures" and depth perception
effects. The recently released Nokia 9 PureView features five rear-
facing cameras [28], and the next iPhone is expected to house three
[20]. As sensor costs decrease over the coming years, these multi-
camera setups are predicted to make their its way to lower-end
phones and other consumer hardware [23].

2.2 Improvements in Software
Improvements in photo processing have made their way to the
consumer market, as innovations in computer vision pave the way
for intelligent analysis and interpretation of noisy raw camera
data [17]. "Night Sight", present in the Google Pixel line of phones,
can capture details in near-total darkness using relatively short
shutter speeds. "Portrait Mode", available in smartphones from
several manufacturers including the iPhone, uses computer vision
techniques to estimate depth from one or more cameras. Google
Clips, a pocket-sized camera released in 2018, uses machine learning
to control the shutter and automatically take "interesting" photos
[14].

Recent advancements in computer vision have also enabled com-
puters to fill in hidden visual content. Scene reconstruction of 3D
environments from a set of disjoint 2D images has been studied
extensively over past years [12]. Adobe’s "content aware fill" fea-
ture, now present in Adobe After Effects, is capable of seamlessly
inferring and filling in missing sections of an image [7]. These
techniques could be applied towards ascertaining aspects about the
environment that are not immediately shown in the camera frame.

Machine learning has also driven improvements in discerning
patterns from noisy signal data [17]. This has already made possible
several side channel attacks against the physical space: mobile
keyloggers have been built from smartphone microphones [2] and
gyroscopes [8]. We believe similar techniques can be carried over
to analyze camera images and enable new computer vision side
channel attacks.

2.3 Societal Trends
We believe ongoing societal trends will multiply the quantity of
cameras and their frequency of use in the coming years, amplifying
the plausibility of visual side-channel attacks.

The norms around disclosure of surveillance are being relaxed.
The release of Google Glass in 2013 was followed by significant criti-
cism due to public privacy concerns (early adopters were commonly
referred to as "glassholes"), which contributed to the project’s even-
tual shutdown [37]. However, five years after Google Glass, similar
"always-on, always-connected" devices like Snap Spectacles [10]
and Google Clips [14] have been released that have not been met
with the same skepticism.

Moreover, the public is becoming more comfortable with - or
often unaware of - camera observation, in part due to the growth of
social media making camera recording commonplace. Additionally,
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public attitudes may begin to shift towards accepting a loss in pri-
vacy in exchange for digital conveniences, despite civil liberty con-
cerns imposed by government surveillance programs [31]. Recent
polling of the Chinese public has indicated citizens are becoming
more supportive of surveillance because it improves perceptions of
safety [43].

Finally, the decreasing cost of general purpose hardware, such as
Android tablets used in car and airplane infotainment systems, can
result in cameras being present in unexpected places. For example,
cameras have been found inadvertently embedded in the tablets
that make up airplane seatback entertainment displays, garnering
privacy concerns [27]. As many of these devices are networked
with the outside world, they present new vectors for attackers to
gain access to camera footage.

3 CAMERAS STEALING DIGITAL
INFORMATION

Prior work has already taken advantage of the new wave of high
quality camera hardware, developing new side-channel attacks that
extract information from the use of digital devices.

Many papers have gone beyond traditional “shoulder surfing"
by investigating using reflections off of common surfaces to cap-
ture information from computer screens. Reflective surfaces like
sunglasses [30], teapots, and even the human eye can be read at a
distance to compromise displays [5] [4].

There is also prior work on inferring digital information through
solely body motion. Chen et al. showed that eye movements could
be used as a reliable source of touchscreen keystroke inference
[9]. Shukla et al. showed how cameras can already use observed
hand motions to determine the PIN entry process on common
smartphones [36].

Yue et al. showed that cameras can infer keyboard inputs a user
is typing on a tablet, even without a direct view of the screen itself
[42]. Subsequent research showed that this can even be performed
at great distances via use of a drone flying overhead [41].

This line of work on vision-based side channel attacks has fo-
cused on stealing information through interaction with digital de-
vices. As a result, countermeasures often make use of software
solutions - such as randomizing number input locations on a PIN
entry screen [1] - which can be quickly deployed by a security
software update.

Our focus for this paper is investigating the feasbility of analog
information theft. We believe camera attacks on the analog medium
present a greater threat than similar attacks on digital platforms, as
common sense understanding of pen-and-paper’s affordances has
remained unchanged for millenia. Norms surrounding the safety
and security of covert writing are far more engrained in human
behavior, and will be more difficult to change.

4 ATTACKS ON HANDWRITING
To demonstrate one of the possible analog side-channel attacks
that are now possible thanks to camera quality and availability
improvements, we prototyped a novel attack on handwriting that
demonstrates how digital sensors can be used to breach the analog
space. Our attack applies simple computer vision techniques to
exploit pen motion as a source of information. This is based off

Figure 2: A frame capture representative of a test video that
fits our security model. Note how the writing is deliberately
obscured from view. Image has been magnified and bright-
ened for viewing clarity.

of the observation that as a person writes, their pen follows a
trajectory dependent on the individual characters being written -
for example, an “O" might project a more circular motion than a
“W".

We hypothesized that analyzing this motion could allow an
attacker to reverse-engineer the original text written on the page.
Our paper presents an end-to-end classification program which
accepts recorded video of a victim writing numbers and produces a
ranking of output predictions for each digit.

4.1 Security Model
We assume that an attacker has access to camera footage of a victim
writing on a piece of paper, and wants to determine what the victim
has written. However, the camera footage cannot view the paper
or pen tip directly - instead, it can only view the back end of the
victim’s pen. For example, the subject could be writing on the page
and deliberately covering the text with their hand, but leaving the
rear of the pen visible. An example frame capture demonstrating
this view is shown in Figure 2.

We assume the footage comes from a high resolution (1080p and
above) zoomable camera capable of recording video of at least 30
FPS - hardware capabilities easily surpassed by modern devices. For
this prototype, we restrict the class of written symbols the attacker
is attempting to decipher to the digits 0-9. Numbers keep our search
space tractable, but also regularly contain sensitive information of
known lengths (such as credit cards or social security numbers).

We test our model on a suite of videos recorded from varying
camera angles and distances. In our test footage, the victim writes
with a font size equal to that used when entering social security
numbers on the IRS W-9 form [15], emulating a real-world scenario.

4.2 Prior Work
Prior work on pen observation influenced our system implemen-
tation. Using only a top-down camera view, Munich and Perona
[26] constructed a stylus-like human-computer interface using a
combination of edge detection and Kalman filtering to track the pen
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tip. Seok et al. extended this work to track pens against non-blank
paper by using a color and shape matching strategy [35].

Wu et al. [39] augmented a pen by attaching a 3D printed dodec-
ahedron with tracking marks printed on each face, enabling real
time pose estimation with submilimeter accuracy. While our se-
curity model only emcompasses “unaugmented" commodity pens,
the effectiveness of the work by Wu et al. suggested to us that
knowledge of the rear end of the pen could nonetheless be used to
infer motion of the front.

Yasuda et al. [40] proposed a signature verification system which
compares the motion of a pen’s tip against a pre-recorded signa-
ture path, making use of temporal sequence similarity metrics to
determine if two pen paths “match". Our model takes advantage of
a similar metric, Time Warp Edit Distance (TWED) [25], in order
to compare temporal sequences.

4.3 System Design
In order to use the program, the attacker must supply 1) video
footage of the user writing, 2) the estimated locations of the four
corners of the paper in the video frame, 3) a bounding box around
the rear end of the pen to motion track, and 4) the quantity of digits
to predict, n.

Once these details are provided, the program executes the fol-
lowing steps in sequence:

(1) The program estimates the pose of the camera relative to the
paper. More formally, the program determines the position
of a 3D paper from its 2D projection on the camera view,
outputting a rotation matrix R and translation vector t . We
make use of the OpenCV implementation of the Perspective-
n-Point algorithm by Li et al. [22] with the four corners of an
8.5x11 inch page (estimated by the attacker) as the reference
points.

(2) The set of 3D ground truth digit sequences are transformed
tomatch the camera’s perspective. Ourmodel applies a linear
transformation by multiplying the the generated rotation
matrix R by the positions stored by the time series ground
truth data (discussed in the following section). In effect, the
ground truth motion sequences are transformed to what they
would look like as if they were viewed in 2D at the given
camera angle.

(3) The path of the rear end of the pen is determined using
motion tracking. The attacker must initially draw a bounding
box around the rear end of the pen, which is then tracked
through successive frames and used to construct a time series
that estimates the pen’s path in the 2D projection. Our model
uses the Discriminative Correlation Filter with Channel and
Spatial Reliability (CSRT) [24] [19] algorithm, a state-of-the-
art motion tracking algorithm based on optical flow. We use
the implementation of CSRT supplied by OpenCV 3.4.3. An
example of a motion tracked writing path of the digit “3" is
shown in Figure 5.

(4) The multi-digit path is partitioned into individual digit paths
using a discretization heuristic. This helps distinguish “pen
down" motion (when ink is flowing) from “pen up" motion
(spaces and transitions). In order to do so, we observed that
spaces are often indicated by a short burst of rapid motion as

Figure 3: Frame captures of the (0, 55, 100), (0, -45, -90), (0,
-30, -130) test cases and ground truth collection case, respec-
tively. The images here have been cropped, brightened and
magnified significantly for viewing clarity.

the victim shifts their pen quickly in preparation for writing
the next digit. Accordingly, our model greedily finds points
in the path that have the greatest speed, flagging the nearby
surrounding region as a space until n − 1 spaces have been
found. Figure 4 displays the normalized speed of a path “1-
2-3" from our ground truth set, with circles indicating the
beginning of spaces according to our heuristic.

(5) Each digit chunk is compared against the set of pre-recorded
and transformed ground truth paths (from step 2) and ranked.
In order to compare these different temporal sequences, we
make use of Time Warp Edit Distance (TWED) [25], a vari-
ant of the Fast Dynamic Time Warping algorithm [34]. The
score of a sequence is then computed by taking the sum of
squared distance (TWED score) for the individual X and Y
axis temporal sequences. The system then finds the digit
class with a sequence that minimizes this score.

The final output of the model is a ten class ranking for every
digit in the sequence.

Our model was developed using Python 3.6.5 and the OpenCV
3.4.3 computer vision library [29].

The project source code, including all training and testing data, is
available online at https://github.com/patil215/bigbrother.

4.4 Training Data Collection
We recorded a corpus of 3D “ground truth" data for our model to
compare inputs against for classification. Our ground truth digit
paths were collected using a two camera setup to capture themotion
of the pen in 3D, using a professional 12MP Panasonic Lumix DMC-
LX100 camera and a 12MP GoPro Hero 5 aligned only the X-Y
and X-Z plane respectively. Both cameras were set to record at
1080p and 60 frames per second. The footage was then manually
segmented and discretized to create a corpus of paths for each digit.
A sample 3D path is shown in Figure 5.
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Figure 4: Chart showing normalized speed of the pen end for
each frame in the sequence "1-2-3". The circles indicate the
frame right after the beginning of spaces, as determined by
our greedy heuristic.

Figure 5: An example ground truth path for the digit "3", cap-
tured frommotion tracking the rear end of the pen. The left
image is from the top down XY perspective; the right image
is from the side YZ perspective. The start and end of the path
is designated by the larger and smaller circles, respectively.

Our ground truth data set of 253 single-digit samples consisted
of about 25 examples per digit class, recorded from a single test
subject (Patil).

4.5 Results
4.5.1 Test Data. To evaluate the effectiveness of our model, we
recorded a suite of test videos comprising multiple camera angles,
distances, and digit sequence lengths of our test subject (Patil)
writing random numbers on the same test bed template shown
in Figure 6. All videos were recorded with the Panasonic Lumix
camera at 4K resolution and 30 FPS. Test paths were captured using
the motion tracking after manually drawing a bounding box around
the rear end of the pen. Frame captures from each angle are shown
in Figure 3. All in all, our test video data comprises 1213 paths
spanning 12.4 gigabytes of compressed video footage.

Figure 6: Example test bed template sheet, printed out on
standard 8.5 in by 11 in paper. The digit entry boxes are .5 cm
wide and .85 cm tall to emulate the digit entry fields on the
IRS W-9 form [15]. The numbers are randomly generated
with each test sheet.

The following table provides a snapshot of the quantity of test
cases, organized by sequence length. We focus on test paths of
“interesting" lengths: credit card numbers are grouped by four digit
sequences, phone numbers are seven digits, and social security
numbers are nine digits. Results from input sequences of other
lengths are present in the project source code.

Euler Angles Distance (m) 1 4 7 9
0, 55, 100 2.4 80 56 32 16
0, -30, -130 1.4 69 49 28 14
0, -45, -90 1.7 70 49 28 14

4.5.2 Evaluation. As our model offers a ranking of all ten possible
digits for each of the n digits in the sequence, we evaluate our
model’s performance by investigating the likelihood of our model
guessing the correct sequence within r guesses for each digit.

We define the guess magnitude as the size of the set of possible
digit sequences given r guesses for each digit. Given an n digit
sequence and 1 ≤ r ≤ 10 guesses for each of the digits in the
sequence, the total guess magnitude is then rn . (In the worst case,
r = 10 and thus the guess magnitude is 10n , equivalent to brute
force search.)
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A given model’s accuracy score is computed as the likelihood
that the correct digit sequence appears among all guesses. We
compare our model’s accuracy to a baseline model where each digit
is randomly picked out of a size of set r . When picking randomly
among each digit given 10n total n-digit sequences, the baseline
random guess accuracy score is then rn

10n = ( r10 )n .
When classifying single digits, our model is able to achieve

61.64% accuracy with only a single guess, compared to a 10% prob-
ability for the baseline. Given a set of five guesses, our model man-
ages to contain the correct digit within the set 95.89% of the time,
compared to a 50% probability for the baseline.

Our model’s accuracy scores significantly beat the baseline in
all multiple digit sequence cases we tested as well. For example,
for n = 9, the set of guesses generated by taking the top seven
(r = 7) guesses for each digit from our model will contain the actual
nine digit sequence with 51.22% probability, whereas the baseline
only offers a 4.04% probability of guessing the nine digit sequence
correctly given seven random guesses for each digit. This also yields
a signficant reduction in search space: a brute force search over nine
digits would give a guessmagnitude of 109, which is 109

79 = 729 times
larger than the selection offered by our model for r = 7. Moreover,
our model’s suggestions are still useful when an exhaustive search
is needed, placing more likely sequences candidates first.

Table 1 includes a breakdown of how well our model classifies
digit sequences of various lengths. Our model performs better than
the baseline by a significant margin when given the same number
of guesses. Graphs comparing our model’s accuracy to the baseline
for n = 1, 4, 7 are shown in Figure 7.

The model performs better on some camera vantage points than
others - for the single-digit case, the average rank (average value
of r needed to correctly guess the sequence) at the best angle (0,
-45, -90) is 1.5, while at the worst angle (0, 55, 100), the average max
rank is 2.0. Table 2 provides complete statistics of average max rank
by sequence length and camera angle.

Our model’s performance validates our hypothesis by demon-
strating pen motion, however subtle, can be analyzed to recover
information about the text being written. Additionally, the suc-
cess of the single digit case from chained application of relatively
unsophisticated techniques for data collection and classification
demonstrates this information may be surprisingly accessible.

4.6 Discussion
The outcome of our prototype demonstrates that cameras can be
used to indirectly capture information that has been hidden from
an attacker. We stress that our model does not take advantage of
more sophisticated techniques that are already available today that
would make it more effective:

(1) Our model uses a relatively small amount of information
available from the camera, tracking the rear end of the pen as
a single point. This ignores the full 3D geometry of the pen,
which can be used to estimate the pose more accurately. Re-
search has demonstrated this is possible given a predefined
pen reference model for pose estimation [21]. Additionally,
inputs from other side channels can be considered simulta-
neously with camera vision, such as the use of the sound for
digit segmentation.

Figure 7: Accuracy scores for sequence lengths of n = 1, 4, 7.
For n = 1, out of a set of 219 test samples, our model cor-

rectly classifies 61.64%with only a single guess, with the cor-
rect class appearing within the top 5 guesses 95.89% of the
time. The baseline is given by rank

10 .
For n = 4, out of a set of 152 test samples, 57.89% of se-

quences were included in the set of sequences given by five
guesses per digit. The baseline is given by ( rank10 )4.

For n = 7, out of a set of 84 test samples, our model consid-
ered 33.33% sequences correctly within the top 5 guesses for
each digit. The baseline is given by ( rank10 )7.
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Seq. Length 1 4 7 9
Max Rank (r ) Model (%) Base (%) Model (%) Base (%) Model (%) Base (%) Model (%) Base (%)

1 61.64 10.00 3.29 0.01 0.00 0.00 0.00 0.00
2 83.11 20.00 15.79 0.16 0.00 0.00 0.00 0.00
3 89.95 30.00 32.24 0.81 7.14 0.02 2.44 0.00
4 93.61 40.00 48.03 2.56 20.24 0.16 9.76 0.03
5 95.89 50.00 57.89 6.25 33.33 0.78 21.95 0.20
6 97.26 60.00 69.08 12.96 48.81 2.80 36.59 1.01
7 98.17 70.00 77.63 24.01 59.52 8.24 51.22 4.04
8 99.54 80.00 85.53 40.96 67.86 20.97 60.98 13.42
9 100.00 90.00 92.11 65.61 85.71 47.83 80.49 38.74
10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 1: Percent accuracy results for sequence lengths of 1, 4, 7, and 9 compared to baseline results. All percentages are rounded
to two decimal places. Our model outperforms the baseline even as sequence length increases.

Sequence
Length (n)

Average Max
Rank (0, -45, -90)

Average Max
Rank (0, -30, -130)

Average Max
Rank (0, 55, 100)

Average
(all angles)

Std. Dev.
(all angles)

1 1.50 1.83 2.06 1.95 0.28
4 3.82 5.98 5.71 5.85 1.18
7 5.43 7.42 7.47 7.45 1.16
9 6.14 7.82 8.13 7.98 1.07

Table 2: Average Max Rank (AMR) for a few representative angles for sequence lengths of 1, 4, 7, and 9. AMR helps estimate
our model’s performance on a given test dataset; this score can vary depending on camera angle and distance.

(2) The algorithms used for in tracking and classification are gen-
eral purpose and non-domain-specific. Our current TWED
and nearest neighbor classification strategy is relatively unso-
phisticated compared to more complex classification models
such as neural networks [32]. A more sophisticated scor-
ing kernel such as multidimensional TWED [6] could better
distinguish handwritten characters from each other. Addi-
tionally, a more powerful motion tracking strategy such as a
color and shape matching approach could be able to track
the pen with greater accuracy [35].

(3) Our model makes use of relatively unsophisticated hard-
ware compared to what is entering the market. High speed
video recording capabilities (240 FPS) are becoming standard
smartphone features, which can lead to improvements in
object motion tracking accuracy [18]. Stereo camera hard-
ware offering depth estimation is also becoming available
[20], with some applications like virtual reality require more
robust depth tracking using dedicated infrared sensor ar-
rangements. Making use of these sensors would allow for
3D depth estimation, making the motion tracking more pow-
erful.

We believe these improvements represent relatively low-hanging
fruit and are thus not out of reach of a government agency, computer
vision research team, or specialized corporation.

5 COUNTERMEASURES
The most direct mitigation against the presence of camera surveil-
lance is straightforward: conduct business in an area free of it.
However, society today has many scenarios where people cannot

or do not think to take this mitigation, as common sense behavior
surrounding pen-and-paper is entrenched within our society. Busi-
nesses and government offices contain employees and customers
working on forms and other confidential data among many attack
venues - overhead security cameras, videoconferencing hardware,
and personal devices. Polling places have shielded voting booths,
but these still usually leave the eye, body, and armmotions of voters
open to indirect observation. Consumers are actively inviting IOT
devices and camera-based security systems into their homes. Pub-
lic spaces like banks or stores use cameras to monitor customers,
ironically as a security measure.

Ensuring that all of these spaces are free of indirect camera
surveillance is a daunting task, but without greater exploration of
the full capabilities of cameras, these attacks will go unnoticed and
these activities unadjusted.

Fundamentally, these attacks stem from a mis-estimation of priv-
ilege - not only of the details of what cameras can infer, but the
abilities of nearby objects - vibrating chip bags [11], reflective sur-
faces [5], moving hands and pens [36] - to indirectly signify the
activities around them. In order to identify these opportunities
in the future, computer security experts will need to work with
physical security, sensor hardware, and computer vision experts.

6 CONCLUSION
The growing availability of cameras is blurring the line between
the analog and digital space. Innovations in both camera hardware
and computer vision software accompanied by changing social
norms have opened the door to a new type of side channel attack:
inference of information believed to be hidden from view.
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In this paper, we present a novel information stealing attack
against pen-and-paper which demonstrates the ability of cameras
to infer aspects of their environment that are deliberately occluded.
We show that pen motion is a salient source of information about
written output, even when the writing itself is not directly visible.
We present a prototype that uses off-the-shelf computer vision
algorithms and simple classification strategies to predict written
digit outputs with promising accuracy. Given that our prototype
does not make use of more specialized techniques that have already
proven to be effective, we have no doubt that improvements are
possible that would allow for prediction of any handwritten text
from auxiliary motion alone.

We believe this example is representative of a larger class of
attacks that challenge the belief that shielding analog information
is sufficient to maintain privacy in the presence of cameras. Given
improving camera hardware and vision algorithms, as well as chang-
ing social norms, such attacks could eventually disrupt important
social processes that are particularly difficult to change, such as
voting. We conclude by suggesting that computer scientists directly
collaborate with signal processing engineers, physical security spe-
cialists, and computer vision and policy experts in order to address
future threats.
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