
Investigating Deep Reinforcement Learning for Autonomous Drone
Navigation with Continuous Controls

Sean Kirmani
Department of Computer Science
The University of Texas at Austin

kirmani@utexas.edu

Neil Patil
Department of Computer Science
The University of Texas at Austin

neilpatil@utexas.edu

Abstract— As deep learning methods have become more
popular, data-driven methods for autonomous drone naviga-
tion have shown to be a promising substitute for geometric
mesh driven planners. Prior successes have shown success-
ful application of convolutional neural networks in order to
map images to discrete high-level behaviors in a supervised
manner. We analyze the complexity of attempting to learn
a collision-avoidant navigation planner using hybrid model-
free and model-based deep reinforcement learning and with
continuous controls. Ultimately, we are unable to produce a
fully successful planner, so in this work we analyze where this
method partially succeeds, and enumerate ideas for potential
iteration on this problem.

I. INTRODUCTION

We begin our investigation with the intent to write a
planner for a point-to-point obstacle planner for a drone. In
free space, this is trivial as the optimal trajectory is a line.
However, in the real-world a drone must recognize and avoid
obstacles within its trajectory.

The “closed loop” approach to obstacle avoidance is to
perform local scene reconstruction and then plan a trajectory
around the reconstructed mesh. This approach relies on the
scene reconstruction being complete and accurate. However,
reconstructing a manifold mesh is both computationally and
spatially expensive, and the drone must adapt as it travels
further and iteratively constructs the mesh. Other methods
simply follow a global plan, using energy functions to repel
the drone from obstacle points, usually retrieved as depth
information from a stereo or infrared sensor.

Deep learning has arisen as a promising tool to understand
high-level representations from lower-level features. Super-
vised methods have proven rather successful for autonomous
aerial vehicles. In the context of obstacle avoidance, there has
been success in collecting and learning from data on drone
crashes both in simulation and in the real-world [1], [2].
These works focus on detecting the probability of collision
and taking actions to minimize this probability.

Most work on obstacle avoidance use discrete actions
spaces of some sort, with the Left-Right-Straight (LRS)
controller being a popular variant for drones. For ground
vehicles, discretizing the action space into a set of linear
velocities and angular velocities tends to be a convenient way
to get more granularity. In our work, we focus on attempting
to learn a continuous control policy.

Fig. 1: The drone executing a flight policy in a simulated
hallway environment.

This is intrinsically difficult to regress towards, especially
when considering sequential actions. One of the most classic
methods for learning continuous control policies are Deep
Deterministic Policy Gradients (DDPG), an actor-critic strat-
egy for learning continuous controls introduced by Lillicrap
[3]. We use DDPG to train a continuous control policy for
an autonomous drone. This is a model-free approach to the
task, which does not explicitly attempt to model the transition
dynamics of the world.

In order to improve performance, we follow up on this
approach by implementing a model that extends one pro-
posed by Kahn et all. [5], which introduces the idea of a
“Generalized Computation Graph”, combining model-based
and model-free approaches by modeling the probability of
collision within a fixed time horizon. Depending on the
setting of the time horizon, this creates an implicit model
of the world.

While learning end-to-end policies from RGB images to
controls is quite popular, we opt to use disparity (depth) maps
as our input state space, as they constitute arguably more
salient features when planning navigation tasks. We argue
that depth-based images are more sample-efficient than their
RGB counterparts, and that an RGB to depth network can
substitute for directly learning from RGB images.

Taken together, we attempt to train a drone to avoid
obstacles using an input of disparity maps and an output of
a continuous control policy. We introduce a hybrid model-
based and model-free actor-critic algorithm, AC-GCG for
learning deterministic policies. While we do not learn a fully
successful policy for this task, we show that this implementa-
tion does result in improvements to modeling and responding
to the environment. Accordingly, we analyze where the task
succeeds and fails in order to better understand the task’s
complexity.

II. RELATED WORK

Previous approaches on using deep learning for obstacle
avoidance with drones have mostly focused on learning a
policy in a supervised manner.

Gandhi et. al [2] attempt to close the gap between simula-
tion and the real world by collecting a large dataset of crashes
on a real drone. This negative flying data is combined with a
set of positive examples and used to train a supervised clas-
sifier mapping RGB input spaces to discrete action outputs.
In their experiment, they collected approximately eleven
thousand crashes on a real drone. They used this data to
train a discrete left-right-straight controller, and successfully
showed they were able to fly without crashing. Notably, they
do not have to deal with transfer, as their dataset is collected
on a real drone.

CAD2RL [1] aims to teach obstacle avoidance by com-
bining a large set of randomly generated environments with
reinforcement learning. This is beneficial as collecting data
on a real drone is time-consuming and difficult. This method
uses single images from an RGB camera to train a deep
convolutional neural network that outputs discrete velocity
commands. In this work, the image space is discretized into
41 x 41 bins, where each bin corresponds to an action in
that direction. By highly randomizing the training set, the
authors are able to train a policy that generalizes well to
the real world, ultimately evaluating the policy on a real
quadrotor flying through a set of hallways. Even though their
simulation environment contained fairly unrealistic worlds
(such as grass on walls and on tables) transfer to a real
drone works well. This interesting finding demonstrates
that the simulation environments do not necessarily need
to be accurate, but simply diverse, meaning that dynamics
randomization can be a useful solution for manipulation and
navigation task transfer [6].

Unlike prior works with discrete action spaces, we often
desire to learn policies outputting continuous controls, as
velocities and torques are continuous values in practice.
While quantizing values is convenient to regress on, it is not
representative. Zhang et al. [7] propose a model-predictive
control based guided policy search method (MPCGPS). In
this approach, the training phase alternates between running
Model Predictive Control (given the full state of the environ-
ment) to attempt the task and collect a dataset of trajectories,
and using this data to train a neural network policy based
on only the vehicle’s onboard sensors. The full state of the
environment is removed during test time. The authors are

able to successfully train a policy that takes a set of readings
from laser rangefinders and outputs a set of 4 rotor velocities.
This is an immensely complex task, and proves to be one of
the biggest successes in learning continuous controls with
unknown dynamics.

Outside of drones, Kahn and Levine [5] have investigated
collision avoidance with RC cars. In this paper, they develop
a stochastic computation graph to represent both model-
free and model-based reinforcement learning, as well as a
way to let the agent self-supervise allowing for continuous
learning. With only a few hours of self-supervised training,
they are able to learn a successful policy outputting a one-
dimensional continuous steering angle. They show that their
stochastic computation graph outperforms other N-step Q-
learning methods for this navigation task.

While many of the previous papers use RGB or grayscale
images, we opt to use depth images similar to in Xie et. al
[8]. Like their work, we are interested in learning obstacle
avoidance using monocular vision. We can leverage the work
done by Eigen and Fergus in neural networks that produce
depth maps from RGB images [9].

Finally, Lillicrap’s deep deterministic policy gradients
(DDPG) [3] algorithm has become a popular actor-critic
method for learning continuous control tasks. In practice,
DDPG performs well with solving navigation tasks, while
A3C performs well with manipulation and control tasks.

III. MODEL-FREE NAVIGATION WITH DEEP
DETERMINISTIC POLICY GRADIENTS

For simplicity, we began our implementation using a
model-free scenario. We begin by implementing DDPG, a
fairly classic actor-critic algorithm. By leveraging the actor-
critic method, our algorithm simultaneously learns how to
act as well as how to evaluate the actor.

DDPG is an off-policy training algorithm, so we train in
an episodic setting. At every episode, we run our drone for
some maximum number of steps T , and at every step t add
(st, at, rt, st+1) to our experience replay buffer. Each state
st consisted of some previous number of depth images, each
action at corresponded to our steering control, and rt was
our reward. Using a replay buffer and sampling it uniformly
helps avoid only sampling recent experiences, so that the
policy does not converge to some local minima solution
prematurely.

Designing a reward function R turned out to be nontrivial.
We ended up experimenting with many reward shaping
strategies, but ultimately opted for a sparse reward. We
describe our reward methodology and results in the following
section.

A. Reward Function

Tested variations in the reward function generally fell
into two strategies. The first was to encode some metric of
distance to a goal position into the reward function itself.
The reasoning behind this was that the drone would be
incentivized to travel towards a goal location, forcing it to
learn to avoid obstacles along the way.

However, balancing this reward shaping of distance to
goal with the implicit reward of avoiding obstacles was
difficult. As a result, the second class of reward functions
did not explicitly encode a goal position, and instead simply
terminated the episode when the drone collided into an
object. Reward would accrue in such a way that a longer
episode would lead to a higher total reward. In this way, the
drone would be directly incentivized to avoid obstacles when
flying in order to maximize its “time alive”.

Reward was computed at each time “step” within the
simulation, with a step size of 0.25 seconds. The total reward
of the episode would be the sum of the rewards at all time
steps.

We experimented with several variations of reward func-
tion beyond these two general classes. These were:

1) Distance-based: Given a goal position g, a start po-
sition s, and a current drone position xi, we tested two
variations:

xi−s
g−s . This effectively represented the ”percentage com-

plete” of the distance to goal. In order to ensure the drone
would not move away from the goal and still acquire reward,
we would terminate the episode if the drone’s distance from
the goal increased continuously over several steps.

(g − xi)2. This was the squared distance to the goal.
We ultimately decided to consider the probability of col-

lision independent of this higher-level navigation task, and
ended up removing the concept of a “goal” from our task.

2) Direct Shaping from Depth Map: We experimented
briefly with encoding distance to closest object into the
reward function by computing this directly from the image
depth map. This turned out to be challenging as the depth
map contained many regions with no depth information (such
as when objects were outside of the operating range of the
simulated depth image).

3) Velocity: To encourage the drone to travel as far as
possible at each episode, we experimented with a reward
for our current velocity at each time-step. This definition
is convenient as the sum of velocities at each time-step is
correlated with total position travelled.

4) Sparse-Collision Collision: Finally, the drone can sim-
ply be given a reward of +1 if it has not collided, and
of 0 when when it is in collision. As our task is to fly
without collision, maximizing the probability of not colliding
is directly related to the target task.

Ultimately, we opted to treat the reward as the collision
probability, with the resulting goal being to minimize the
probability of collision. Importantly, however, this means
our previous model-free definition is unable to learn this
task beyond just one-step before collision. As a result, we
implement an algorithm to predict “into the future” which
actions will lead to collision by learning a finite-horizon
model of the future.

IV. OVERVIEW OF HYBRID MODEL-BASED AND
MODEL-FREE GENERALIZED COMPUTATION GRAPHS

To predict collision probabilities, instead of predicting
rewards ri, we desire to predict “outputs” yi which do not

Fig. 2: A stochastic computation graph for model-free,
model-based, and hybrid-based reinforcement learning algo-
rithms.

necessarily correspond with with rewards. Given an input
state st and actions AHt = (at, ..., atH−1) over a horizon H ,
we produce outputs Ŷ Ht = (ŷt, ...ŷt+H−1) and an additional
terminal output b̂t+H . This output is mapped as our critic
function over some parameterization θ, with the loss to
optimize represented as εt(θ).

The stochastic computation graph proposed by Kahn [5]
subsumes both model-free and model-based reinforcement
learning. If H = T , where T is the episode length, the model
is entirely model-based. If H = 1, the model represents the
model-free approach. A value of H in between means the
model represents some fixed horizon in the future.

In the case of the drone, we pick a horizon of H = 16,
which corresponds to predicting if the drone will collide with
the wall over the next 4 seconds (as our step size corresponds
to 0.25 seconds per step). We find that choosing a longer
horizon (H = 16) outperforms the short horizon (H = 1)
in practice.

As discussed above, we chose a sparse collision-based
output, yi, corresponding to either +1 (if no collision) or
0 (if collision). The loss εt(θ) can be represented in in
two ways: as a mean-squared error regression loss or as
a classification loss. We find that treating the collision as
a classification problem trains better than as a regression
problem when training the model. If our model outputs are
collision probabilities, the loss function becomes the cross
entropy loss:

εt(θ) = −
[H−1∑
h=0

yt+h log(ŷt+h) + (1− yt+h) log(1− ŷt+h)+

b̂t+H log(b̂t+h) + (1− b̂t+H log(1− b̂t+H)
]

(1)

Finally, we define our terminal output as

bt+H = max
AH

1

H

H∑
h=0

ŷt+h (2)

which represents the maximum average probability of
flying without collision that the robot can achieve at time
t+H .

Data: computation graph for critic Q(s,AH |θQ), actor
µ(s|θmu) with weights θQ and θµ, error function
for computation graph εt(θ), and policy
evaluation function J(st, AHt)

begin
initialize dataset D ← ∅
for e ∈ number of epochs E do

initialize trajectory buffer B ← ∅
for t = 1 to T do

get current state st
select action at ← µ(s|θµ) +Nt according

to the current policy and exploration noise.
execute first action at
receive labels yi
add (st, at, yt, st+1) to trajectory buffer B
if st is terminal then

break
end

end
for (st, at, yt, st+1 ∈ B do

initialize Y Ht ← ∅
initialize AHt ← ∅
for h = 1 to H do

add yt+h to Y Ht
add at+h to AHt

end
add (st, A

H
t , Y

H
t , st+1 to dataset D

end
for some number of optimization steps do

sample a random minibatch of N transitions
(st, A

H
t , Y

H
t , st+1) from D

update the the critic by minimizing the loss:
θQ ← θQ + argminθQ εθQ(θ) using the
minibatch

update the actor policy using the sampled
policy gradient:

∇µθJ ≈ Est∼ρβ
[
∇µθQ(s, a|θQ)|s=st,a=µ(st|θµ)

]
Update the target networks:
θQ′ ← τθQ + (1− τ)θQ′ and
θµ′ ← τθµ + (1− τ)θµ′

end
end

end
Algorithm 1: Reinforcement Learning with Actor-Critic
Generalized Computation Graph (AC-GCG)

Fig. 3: The general actor-critic framework.

V. ACTOR-CRITIC GENERALIZED COMPUTATION
GRAPHS

We replace our critic network in our DDPG implementa-
tion with the model described above. This is unlike the work
done in [5], which did not use an actor network and simply
chooses the best action out of a set of K random actions.
While their work is most analogous to N-Step Q-Learning,
our work is still an actor-critic architecture, simultaneously
learning how to act as well as how to evaluate the drone’s
performance.

Our algorithm chooses actions at ∈ RN , selecting N
actions to perform over horizon H . It fundamentally tries to
optimize actions that maximize bt+H , which is the maximum
probability of not colliding. Our parameterized actor function
is represented as µ(s|θµ).

We can interpret Y Ht and its corresponding loss as how
we learn our model, and bt+H as the actual value we want
our actor to optimize. Thus, we can treat bt+H as the target
which our actor network is attempting to learn. As t→∞,
bt+H will become stationary, as it will converge to a learned
model of the world. Initially, the algorithm is taking the best
actions it can under its belief of the world. We can apply
the chain rule and update the action with respect to error
in the belief. Importantly, we update our model before we
update the belief of the best actions we can do. The actor
is updated by applying the chain rule to the expected return
from the start belief distribution J with respect to the actor
parameters:

∇µθJ ≈ Est∼ρβ
[
∇µθQ(s, a|θQ)|s=st,a=µ(st|θµ)

]
= Est∼ρβ

[
∇aQ(s, a|θQ)|s=st,a=µ(st)∇µθµ(s|θ

µ)|s=st
]

(3)

where Q(a, s) = bt+H in our optimization formulation.

Fig. 4: A subset of the environments used in training. From left to right: Simple Cylinder, House, Constrained Hallway.

Taken together, the main contribution of this paper is the
introduction of a general model-based and model-free actor-
critic algorithm for learning deterministic policies. This algo-
rithm combines ideas from both Deep Deterministic Policy
Gradients and Generalized Computation Graphs. Since we
formulate the computation graph in an actor-critic frame-
work, we refer to our algorithm as an actor-critic generalized
computation graph (AC-GCG).

VI. IMPLEMENTATION STRUCTURE

A. Environment

A simulated environment based within ROS Indigo and
Gazebo 2 was used to train and evaluate the drone. The
drone being simulated was heavily modeled after the Parrot
AR Drone 2.0, a common drone used in research. We
made extensive use of the open-source tum ardrone and
tum simulator ROS packages in order to simulate the drone.
All algorithms were implemented with a combination of
rospy and Tensorflow.

We manually designed a simple set of 3D Gazebo worlds
in which the drone would fly. These were:
• “Single Cylinder”: a simple, open-ended world only

containing a single cylinder.
• “House”: a large “house” structure with many hallways

and separate rooms.
• “Structured Hallway”: a constrained hallway structure

with barriers along its length, forcing the drone to travel
in a zig-zag pattern to keep moving.

• “Enclosed Hallway”: a more open-ended hallway form-
ing a ring shape.

Figure 4 shows a sample of the training environments used in
testing. A video of the drone training within this environment
can be viewed at https://youtu.be/SpHzPUGTd3c.

B. Policy State Inputs

As our goal was to train a policy mapping directly from
sensor data to actions, our state input consisted of direct
visual and pose sensor data. We decided to use depth
data instead of raw RGB values, as we reasoned depth
would contain more salient information relating to predicting
collisions.

Sensor data was collected from ROS and resized to a
64x32 image. This was concatenated with the sensor data
from the previous three steps and fed to the drone. At first,
this sensor data was also combined with a length three vector
describing the drone’s position in free space. However, after
switching to a reward function not dependent on location,
pose was removed from the input.

C. Collision Behavior

As mentioned above, our final reward function is paired
with resetting the episode each time the drone collides with
an object. In order to do this, we make use of a bump
collision sensor provided by Gazebo.

At first, our episode restarts were accompanied by reset-
ting the drone to its initial position and orientation at the
beginning of the episode. As a result, the drone would start
from the same place each time.

However, we found that allowing the drone to continue
from its current location allowed for faster training and a
greater variety of collision experiences, and prevented spatial
biasing of experiences. To facilitate this, we would have the
drone back up for several seconds after colliding with an
object. The episode would then be restarted from its current
position. Often, this would result in the drone repeatedly
colliding and backing up from the wall several times, adding
collision-related information without requiring the drone to
fly a full path to the barrier again.

D. Action Space

As we intended to output continuous controls, the action
output consisted of a vector of scalar values. Initially, this
consisted of 4 values x, y, z, r corresponding to a velocity
command along the x-axis, y-axis, z-axis, and rotation along
the z-axis respectively.

However, during experimentation, we progressively sim-
plified the action space:

1) After observing there were few actions requiring y that
could not be done with some combination of x and r,
this parameter was removed.

2) After observing that height of the drone contributed
little to its ability to avoid obstacles in the particular

https://youtu.be/SpHzPUGTd3c

Fig. 5: The structure of the actor and critic networks.

worlds we tested, the drone was configured to start at
a fixed height and z was set to zero.

3) We initially tried to encourage positive values of x
(asking the drone to move forward) with some reward
shaping. However, this behavior was eventually forced
by fixing the value of x.

As a result, our final action space was a single scalar value
r, corresponding to a rotational velocity output.

E. Network Architecture

Within the DDPG implementation, the final architecture
consisted of a number of convolutional layers combined with
ReLU activations. These were then combined with two fully
connected layers to output the final action scalar value.

When switching to the hybrid-model approach, a mul-
tiplicative integration LSTM was added. Additionally, the
action choices were fed into a series of convolutional layers
that were then fed into the LSTM, and were followed by two
fully connected layers to output the values of y and b.

Figure 5 contains a detailed diagram of the network
architecture.

VII. RESULTS

Qualitatively, the drone failed to learn a fully functional
obstacle avoidance policy with both algorithms. However,
the drone showed promising behavior that indicated a partial
success of the models. Additionally, the Generalized Com-
putation Graph method resulted in better performance than
the naive DDPG implementation, as expected.

Under the DDPG implementation, the drone would occa-
sionally learn a simple policy that allowed it to avoid a wall
or barrier in early iterations. However, further training would
often lead to catastrophic failure, resulting in a policy that
would lead the drone to crash directly into the wall.

Switching from DDPG to the Generalized Computation
Graph resulted in an improvement in learning. While the
drone still failed to learn a policy that reliably avoided
obstacles, in some cases the drone learned promising simple
policies. For example, after some training the drone learned
to travel in a tight circle. By doing so, the drone was
able to avoid walls completely and maximize its reward
function. A video of this trained policy can be viewed
at https://youtu.be/LHbQWyGzTqs. Figure 6 shows
graphs of the horizon success probability, model accuracy,
and reward during training in this scenario. Notably, the
model accuracy reaches convergence, and the probability
of avoiding a collision does increase during training, as
expected.

The initial drop in the horizon success probability shown
in Figure 6 also makes sense. This is explained by the fact
that at the beginning of training, the drone has not developed
a good model of the world. As a result, it overestimates its
probability of avoiding walls - hence the high horizon success
probability. As the model improves, however, this probability
quickly falls. Eventually, as the actor improves further, the
probability slowly climbs again. A simplified analogy can
be made to the “Dunning Kruger Effect” - the robot initially
does not know what it does not know, so it overestimates its
performance, but as it develops a better understanding, this
is quickly corrected.

Occasionally, simulation error would lead to the drone “es-
caping” its hallway during training. Figure 7 shows the hori-
zon success probability, model accuracy, and reward in this
scenario. Interestingly, this unexpected case demonstrates
some desirable aspects of the algorithm, serving as a sanity
check. As the drone leaves the constrained environment, it
becomes much easier for it to avoid crashing, as there are
fewer obstacles to collide with (as the drone is now in an
environment close to free space). This is reflected by the fact

https://youtu.be/LHbQWyGzTqs

Horizon Success Model Accuracy Reward

Fig. 6: The learning curves and uncertainty of the final policy trained over 14 hours when H = 16 inside the “Enclosed
Hallway” world. Performance over the horizon gets better as more data is collected to improve the model. From left to right,
all plotted as a function of number of iterations: the probability of not colliding over the horizon (actor loss), the accuracy
of the model predictions (critic loss), and the reward (performance on actual task).

Horizon Success Model Accuracy Reward

Fig. 7: The learning curves and uncertainty of the final policy trained over 14 hours when H = 16 in the “Enclosed Hallway”
world. In this case, the drone inadvertently escapes the hallway early on in the training process. This functions as a quick
sanity check - we prove that in a scenario where with very few obstacles to collide with (i.e. close to free-space), our model
learned to avoid collisions and avoid the building all together. Notably, the probability of success over the horizon (left)
quickly approaches 1. From left to right: the probability of not colliding over the horizon (actor loss), the accuracy of the
model predictions (critic loss), and the reward (performance on actual task).

that the horizon success probability, accuracy, and reward
functions rapidly increase.

These results lead us to believe that with principled
tweaks to the algorithm, the final policy can be significantly
improved.

VIII. DISCUSSION

In this section, we analyze the various causes that could
explain the performance of our algorithm. What follows are
factors we believe contributed to the failure of the algorithm
to learn a general policy:

A. Sparsity of Information for Assigning Correspondence

The primary goal of the training was to learn a policy
to avoid obstacles. However, information corresponding to
whether this goal was successful only appeared at the
very end of a trajectory - where the drone collided into
an obstacle. This may have been too sparse of a reward,
especially with regards to the DDPG implementation. For
example, if the drone collided with a wall, the correct action
may have been to start turning five seconds prior, but this
action may have been too difficult to associate with the end

result. Alternatively, if the drone did succeed in avoiding the
barrier, it may be unclear if this was due to slight change in
action at the beginning of the trajectory, or an active change
before collision. More generally, this problem is known as
the correspondence problem.

The introduction of the the hybrid model-based model-
free approach potentially helped mitigate this problem by
computing probabilities over a fixed time horizon. Still,
however, the reward’s sparsity may have made modeling
this sample-inefficient. Moreover, choosing an appropriate
time horizon to use within this model is difficult - a small
horizon prevents the drone from being able to correct itself
in time, while a large one leads to an exponential increase
in probability space.

B. Errors in Simulation

Occasionally, simulation error would result in catastrophic
failure during training. For example, when resetting and
backing up the drone, the drone would often be able to
“tunnel” through the walls of its enclosed space, exposing it
to an open environment without walls. Since we did not reset
the drone’s position after each episode, this could influence

the policy. Additionally, errors in modeling of the drone’s
behavior after colliding into the wall could result in flipping
which could also catastrophically affect the results.

C. Poor Actor Performance

As discussed above, the estimates of collision horizon
probability did generally improve with training. This leads us
to believe further improvements may lie in the improvement
of the actor network. Currently, we update our model of
the world and our expectation of the best action we can
do given that previous model simultaneously, and then we
actually update our actor network. It may be better in practice
to actually update our model of the world, then update our
expectation of the best we can do given our ınew model,
and finally update our actor with respect to our updated
expectation. It’s unclear at the time of writing whether
evaluating our best action (i.e. our Q-Value), should be based
on the last model which we acted against or the newest model
we’re acting on.

IX. CONCLUSION

In this work, we attempt to learn a policy outputting
continuous controls in a simulation environment. We test
both DDPG and introduce an actor-critic hybrid model-
based model-free approach that extends the Generalized
Computation Graph presented in previous work. We find that
this hybrid approach does result in an improvement over a
basic DDPG algorithm. While we ultimately do not learn
a successful policy, we demonstrate that the model does
exhibit promising behavior which leads us to believe that this
method is tractable provided some additional improvements
and tweaking.

For example, one of the policies we observed was that the
drone would choose to turn in a loop. This can be easily
corrected by designing a more shaped environment structure
or action space to prevent this from happening.

Additionally, we began our experiments by encoding a
goal position into the reward, but this was ultimately re-
moved. We would like to reintroduce this by integrating
our model with a high level navigation task. In this system,
our trained policy would determine the optimal actions to
avoid obstacles, which could be weighted with the action
that would move the drone closer towards the goal.

We could also factor uncertainty into our planning. Khan
et al. has also considered learning on a real drone and RC
car where the velocity of the vehicle is proportional to how
certain the agent’s future actions will be successful [10].
Thus we don’t set a fixed velocity, and actually leverage the
intrinsic uncertainty in our actions. This is also interesting
from a human-robot interaction perspective because it actual
communicates our uncertainty through our actions.

The final goal is to transfer this policy from simulation to
a real-world drone, as with prior works [6], [1], [11], [12].
This may be tractable provided the drone is trained on a large
and varied set of simulation environments.

REFERENCES

[1] F. Sadeghi, S. Levine, “CAD2RL: Real Single-Image Flight without a
Single Real Image”, 2017.

[2] D. Gandhi, L. Pinto, A. Gupta “Learning to Fly by Crashing”, 2017.
[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,

D. Silver, D. Wierstra, “Continuous control with deep reinforcement
learning”, 2015.

[4] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P.
Welinder, B. McGrew, J. Tobin, P. Abbeel, W. Zaremba, “Hindsight
Experience Replay”, 2017.

[5] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, S. Levine, “Self-supervised
Deep Reinforcement Learning with Generalized Computation Graphs
for Robot Navigation”, 2017.

[6] X. B. Peng, M. Andrychowicz, W. Zaremba, P. Abbeel, “Sim-to-Real
Transfer of Robotic Control with Dynamics Randomization”, 2017.

[7] T. Zhang, G. Kahn, S. Levine, P. Abbeel, “Learning Deep Control
Policies for Autonomous Aerial Vehicles with MPC-Guided Policy
Search”, 2016.

[8] L. Xie, S. Wang, A. Markham, N. Trigoni, “Towards Monocular Vision
based Obstacle Avoidance through Deep Reinforcement Learning”,
2017.

[9] David Eigen, Rob Fergus, “Predicting Depth, Surface Normals and
Semantic Labels with a Common Multi-Scale Convolutional Architec-
ture”, 2014.

[10] G. Kahn, A. Villaflor, V. Pong, P. Abbeel, S. Levine, “Uncertainty-
Aware Reinforcement Learning for Collision Avoidance”, 2017.

[11] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakr-
ishnan, L. Downs, J. Ibarz, P. Pastor, K. Konolige, S. Levine, V.
Vanhoucke, “Using Simulation and Domain Adaptation to Improve
Efficiency of Deep Robotic Grasping”, 2017.

[12] A. A. Rusu, M. Vecerik, T. Rothrl, N. Heess, R. Pascanu, R. Hadsell,
“Sim-to-Real Robot Learning from Pixels with Progressive Nets”, 2016.

	Introduction
	Related Work
	Model-Free Navigation with Deep Deterministic Policy Gradients
	Reward Function
	Distance-based
	Direct Shaping from Depth Map
	Velocity
	Sparse-Collision Collision

	Overview of Hybrid Model-Based and Model-Free Generalized Computation Graphs
	Actor-Critic Generalized Computation Graphs
	Implementation Structure
	Environment
	Policy State Inputs
	Collision Behavior
	Action Space
	Network Architecture

	Results
	Discussion
	Sparsity of Information for Assigning Correspondence
	Errors in Simulation
	Poor Actor Performance

	Conclusion
	References

